

ND DAQ — Data Rates

J. Hays

QMUL

3rd March 2021

DAQ Org Chart

Near Detector DAQ now integrated into the DAQ Consortium

Revised Organisation Chart

ND DAQ

Data Rates

To move forward on the design of the DAQ need an understanding of the potential data rates between each of the sections.

Data Rates?

Input

Full read-out – minimal zero-suppression – maximum possible into DAQ

Zero-suppressed peak rate – likely maximum into DAQ

Zero-suppressed typical rate – likely average into DAQ

Data Selection

Rate into trigger / data selection step – trigger primitives or full readout

Output

Rate to offline storage

Data Reduction / Selection

Data Reduction:

zero suppression
data aggregation
time slicing
pre-scaling
physics triggering

...

Physics requirements

What is needed to do the physics, what is needed to commission and run the detectors?

Information so far...

Discussions with detector groups

Computing CDR

Spreadsheet compiled by Tom Junk (I think?)

Next steps – need to refine the details to get best predictions and upper-limits and tie into physics requirements

